Contribution of Fe3O4 nanoparticles to the fouling of ultrafiltration with coagulation pre-treatment
نویسندگان
چکیده
A coagulation (FeCl3)-ultrafiltration process was used to treat two different raw waters with/without the presence of Fe3O4 nanoparticle contaminants. The existence of Fe3O4 nanoparticles in the raw water was found to increase both irreversible and reversible membrane fouling. The trans-membrane pressure (TMP) increase was similar in the early stages of the membrane runs for both raw waters, while it increased rapidly after about 15 days in the raw water with Fe3O4 nanoparticles, suggesting the involvement of biological effects. Enhanced microbial activity with the presence of Fe3O4 nanoparticles was evident from the measured concentrations of extracellular polymeric substances (EPS) and deoxyribonucleic acid (DNA), and fluorescence intensities. It is speculated that Fe3O4 nanoparticles accumulated in the cake layer and increased bacterial growth. Associated with the bacterial growth is the production of EPS which enhances the bonding with, and between, the coagulant flocs; EPS together with smaller sizes of the nano-scale primary particles of the Fe3O4-CUF cake layer, led to the formation of a lower porosity, more resilient cake layer and membrane pore blockage.
منابع مشابه
Prevention of PVDF ultrafiltration membrane fouling by coating MnO2 nanoparticles with ozonation
Pre-treatment is normally required to reduce or control the fouling of ultrafiltration (UF) membranes in drinking water treatment process. Current pre-treatment methods, such as coagulation, are only partially effective to prevent long-term fouling. Since biological activities are a major contributor to accumulated fouling, the application of an oxidation/disinfection step can be an effective c...
متن کاملPreparation and Characterization of CA−PEG−TiO2 Membranes: Effect of PEG and TiO2 on Morphology, Flux and Fouling Performance
Modified cellulose acetate (CA) membranes were prepared by dissolving the polymers in a mixture of acetone (AC) and N, N dimethylacetamide (DMAc) (70:30) solvent and deionized (DI) water was used in the coagulation bath. The introduction of polyethylene glycol (PEG) additive and TiO2 nanoparticles (NPs) into the casting solution has changed the structures of the resulting membranes during the p...
متن کاملFouling and Rejection Characteristic of Humic Substances in Polysulfone Ultrafiltration Membrane
In this study, the ultrafiltration membrane for humic substance removal was prepared by blending polysulfone with a high concentration of PEG400 as additives. The influences of the additive to the fouling resistance capability and humic substances rejection of the polysulfone membrane were investigated. The addition of 35%wt of PEG400 concentration improved the pure water flux up to 200, but re...
متن کاملApplication of pulsed UV-irradiation and pre-coagulation to control ultrafiltration membrane fouling in the treatment of micro-polluted surface water.
A major cause of ultrafiltration (UF) membrane fouling is the accumulation of microorganisms and their associated soluble products. To mitigate fouling the application of pulsed short-wavelength ultraviolet (UVC) light (around 254 nm) within the membrane tank together with pre-coagulation was investigated. In mini-pilot-scale tests carried out in parallel with conventional pre-treatment (CUF), ...
متن کاملAPPLICATION OF EVOLUTIONARY POLYNOMIAL REGRESSION IN ULTRAFILTRATION SYSTEMS CONSIDERING THE EFFECT OF DIFFERENT PARAMETERS ON OILY WASTEWATER TREATMENT
In the present work, the effects of operating conditions including pH, transmembrane pressure, oil concentration, and temperature on fouling resistance and the rejection of turbidity for a polymeric membrane in an ultrafiltration system of wastewater treatment were studied. A new modeling technique called evolutionary polynomial regression (EPR) was investigated. EPR is a method based on regres...
متن کامل